Post

1st Year Trade Theory Formulas

ITI Electrician 1st Year Trade Theory Formulas

1st Year Trade Theory Formulas

⚡ ITI Electrician 1st Year – Complete Formula Sheet (With Units)

Comprehensive list of formulas for ITI Electrician 1st Year Trade Theory.

⚡️Electric Charge

\[Q = I \times t\]
QuantitySymbolUnit
ChargeQCoulomb (C)
CurrentIAmpere (A)
TimetSecond (s)

🧮 Ohm’s Law

\[V = I \times R\]
QuantitySymbolUnit
VoltageVVolt (V)
CurrentIAmpere (A)
ResistanceROhm (\(\Omega\))

🧮 Resistance – Derived Formulas

\[R = \frac{V}{I}\] \[R = \frac{W}{I^2}\] \[R = \frac{V^2}{W}\]
FormulaBased OnUnit
\(R = \frac{V}{I}\)Ohm’s LawOhm (\(\Omega\))
\(R = \frac{W}{I^2}\)Power Formula \(W = I^2 R\)Ohm (\(\Omega\))
\(R = \frac{V^2}{W}\)Power Formula \(W = \frac{V^2}{R}\)Ohm (\(\Omega\))

🔗 Resistors in Series & Parallel

Resistors in Series:

\[R_{\text{total}} = R_1 + R_2 + \ldots + R_n\]

Resistors in Parallel:

\[\frac{1}{R_{\text{total}}} = \frac{1}{R_1} + \frac{1}{R_2} + \ldots + \frac{1}{R_n}\]
QuantitySymbolUnit
ResistanceROhm (\(\Omega\))
Total Resistance\(R_{total}\)Ohm (\(\Omega\))

🧲 Inductors in Series & Parallel

Inductors in Series:

\[L_{\text{total}} = L_1 + L_2 + \cdots + L_n\]

Inductors in Parallel:

\[\frac{1}{L_{\text{total}}} = \frac{1}{L_1} + \frac{1}{L_2} + \cdots + \frac{1}{L_n}\]
QuantitySymbolUnit
InductanceLHenry (H)
Total Inductance\(L_{total}\)Henry (H)

📏 Resistivity & Conductivity

Resistivity Formula:

\[R = \rho \frac{L}{A}\]

Conductivity Formula:

\[\sigma = \frac{1}{\rho}\]
QuantitySymbolUnit
ResistanceROhm (\(\Omega\))
Resistivity\(\rho\)Ohm-meter (\(\Omega \cdot m\))
LengthLMeter (m)
Area (Cross-section)AMeter² (m²)
Conductivity\(\sigma\)Siemens/meter (S/m)

🔁 Kirchhoff’s Laws

KCL (Kirchhoff’s Current Law):

The algebraic sum of currents entering a junction is equal to the algebraic sum of currents leaving the junction.

\[\sum I_{\text{in}} = \sum I_{\text{out}}\]

Unit for Current: Ampere (A)

KVL (Kirchhoff’s Voltage Law):

The algebraic sum of all voltages around any closed loop in a circuit is equal to zero.

\[\sum V = 0\]

Unit for Voltage: Volt (V)

🧲 Electromagnetic Induction (Faraday's Law)

\[e = -N \frac{d\phi}{dt}\]
QuantitySymbolUnit
Induced EMFeVolt (V)
Number of TurnsNUnitless
Magnetic Flux\(\phi\)Weber (Wb)
TimetSecond (s)
The negative sign indicates the direction of the induced EMF (Lenz's Law).

🔌 Capacitors in Series & Parallel

Capacitors in Series:

\[\frac{1}{C_{\text{total}}} = \frac{1}{C_1} + \frac{1}{C_2} + \cdots + \frac{1}{C_n}\]

Capacitors in Parallel:

\[C_{\text{total}} = C_1 + C_2 + \cdots + C_n\]
QuantitySymbolUnit
CapacitanceCFarad (F)
Total Capacitance\(C_{total}\)Farad (F)

🧮 Electrical Energy

\[E = P \times t\]
QuantitySymbolUnit
EnergyEWatt-hour (Wh), Kilowatt-hour (kWh), Joule (J)
PowerPWatt (W)
TimetHour (h) or Second (s)

💡 Electric Work

\[W = V \times I \times t\]
QuantitySymbolUnit
Work DoneWJoule (J)
VoltageVVolt (V)
CurrentIAmpere (A)
TimetSecond (s)

🔥 Joule’s Law of Heating

\[H = I^2 R t\]
QuantitySymbolUnit
Heat ProducedHJoule (J)
CurrentIAmpere (A)
ResistanceROhm (\(\Omega\))
TimetSecond (s)

🔋 Electric Power (DC) – 3 Formulas

\[P = V \times I\] \[P = I^2 \times R\] \[P = \frac{V^2}{R}\]
QuantitySymbolUnit
PowerPWatt (W)
VoltageVVolt (V)
CurrentIAmpere (A)
ResistanceROhm (\(\Omega\))

⚡AC Power – Single & Three Phase

\[P = V \times I \times \cos\phi \quad
\] \[\text{(Single Phase)}\] \[P = \sqrt{3} \times V \times I \times \cos\phi \quad \]\[\text{(Three Phase)}\]
QuantitySymbolUnit
Active PowerPWatt (W)
Line VoltageVVolt (V)
Line CurrentIAmpere (A)
Power Factor\(\cos\phi\)Unitless

⚡ Types of Power

\[ \text{Single Phase}\] \[S = V \times I \] \[P = V \times I \times \cos\phi \] \[Q = V \times I \times \sin\phi \] \[\] \[ \text{Three Phase}\] \[S = \sqrt{3} \times V \times I \] \[P = \sqrt{3} \times V \times I \times \cos\phi \] \[Q = \sqrt{3} \times V \times I \times \sin\phi \] \[\] \[ \text{Power Triangle}\] \[S^2 = P^2 + Q^2 \]
QuantitySymbolUnit
Apparent PowerSVolt-Ampere (VA)
Active PowerPWatt (W)
Reactive PowerQVolt-Ampere Reactive (VAR)
Power Factor Angle\(\phi\)Radian / Degree

🧠 Power Factor – 3 Formulas

\[\cos\phi = \frac{P}{S}\] \[\cos\phi = \frac{R}{Z}\] \[\cos\phi = \frac{1}{\sqrt{1 + \left( \frac{Q}{P} \right)^2 }}\]
QuantitySymbolUnit
Power Factor\(\cos\phi\)Unitless
Active PowerPWatt (W)
Apparent PowerSVA
ResistanceROhm (\(\Omega\))
ImpedanceZOhm (\(\Omega\))
Reactive PowerQVAR

🔂 AC Waveform Characteristics

RMS (Root Mean Square) Values:

\[V_{rms} = \frac{V_m}{\sqrt{2}} \approx 0.707 \times V_m\] \[I_{rms} = \frac{I_m}{\sqrt{2}} \approx 0.707 \times I_m\]

Average Value (for half cycle of sine wave):

\[V_{avg} = \frac{2 V_m}{\pi} \approx 0.637 \times V_m\] \[I_{avg} = \frac{2 I_m}{\pi} \approx 0.637 \times I_m\]

Form Factor:

\[\text{Form Factor} = \frac{V_{rms}}{V_{avg}} \approx 1.11\]

Peak Factor (Crest Factor):

\[\text{Peak Factor} = \frac{V_m}{V_{rms}} \approx 1.414\]
QuantitySymbolUnit
Peak Voltage\(V_m\)Volt (V)
Peak Current\(I_m\)Ampere (A)
RMS Voltage\(V_{rms}\)Volt (V)
RMS Current\(I_{rms}\)Ampere (A)
Average Voltage\(V_{avg}\)Volt (V)
Average Current\(I_{avg}\)Ampere (A)
Form Factor-Unitless
Peak Factor-Unitless

📐 Impedance and Reactance

\[Z = \sqrt{R^2 + X^2}\] \[X = X_L - X_C\]
QuantitySymbolUnit
ImpedanceZOhm (\(\Omega\))
ResistanceROhm (\(\Omega\))
Total ReactanceXOhm (\(\Omega\))
Inductive Reactance\(X_L\)Ohm (\(\Omega\))
Capacitive Reactance\(X_C\)Ohm (\(\Omega\))

🌀 Inductive & Capacitive Reactance

\[X_L = 2\pi f L\] \[X_C = \frac{1}{2\pi f C}\]
QuantitySymbolUnit
Inductive Reactance\(X_L\)Ohm (\(\Omega\))
Capacitive Reactance\(X_C\)Ohm (\(\Omega\))
FrequencyfHertz (Hz)
InductanceLHenry (H)
CapacitanceCFarad (F)

⚙️ Admittance

\[Y = \frac{1}{Z}\]
QuantitySymbolUnit
AdmittanceYSiemens (S) or mho (\(\mho\))
ImpedanceZOhm (\(\Omega\))

🔋 Capacitance

\[C = \frac{\varepsilon_0 \varepsilon_r A}{d}\]
QuantitySymbolUnit
CapacitanceCFarad (F)
Permittivity of Free Space\(\varepsilon_0\)Farad/meter (F/m) \(\approx 8.854 \times 10^{-12}\) F/m
Relative Permittivity (Dielectric Constant)\(\varepsilon_r\)Unitless
Area of PlatesAMeter² (m²)
Distance between PlatesdMeter (m)

🔄 Transformer Formulas

Voltage and Turns Ratio:

\[\frac{V_1}{V_2} = \frac{N_1}{N_2}\]

Current and Turns Ratio (for Ideal Transformer):

\[\frac{I_2}{I_1} = \frac{N_1}{N_2}\]
QuantitySymbolUnit
Primary Voltage\(V_1\)Volt (V)
Secondary Voltage\(V_2\)Volt (V)
Primary Turns\(N_1\)Unitless
Secondary Turns\(N_2\)Unitless
Primary Current\(I_1\)Ampere (A)
Secondary Current\(I_2\)Ampere (A)

📐 Constants & Conversions

QuantityValueUnit
1 Kilowatt-hour (kWh)1000 Wh = 3,600,000 JEnergy
1 Horsepower (HP)746 W (Electrical HP)Power
Speed of Light (in vacuum)\(3 \times 10^8\)m/s
Permittivity of free space\(8.854 \times 10^{-12}\)F/m
Permeability of free space\(4\pi \times 10^{-7}\)H/m

⚙️ Efficiency of Electrical Machines

\[\eta = \frac{\text{Output Power}}{\text{Input Power}} \times 100\%\]
QuantitySymbolUnit
Efficiency\(\eta\)Percent (%)
Output Power-Watt (W)
Input Power-Watt (W)

Applies to motors, transformers, generators, etc.

Battery Efficiency

\[\eta = \frac{\text{Output Energy}}{\text{Input Energy}} \times 100\%\]
QuantitySymbolUnit
Efficiency\(\eta\)Percent (%)
Output Energy-Watt-hour (Wh)
Input Energy-Watt-hour (Wh)

⏱ Frequency & Time Period

\[f = \frac{1}{T}\]
QuantitySymbolUnit
FrequencyfHertz (Hz)
Time PeriodTSecond (s)
This post is licensed under CC BY 4.0 by the author.