1st Year Trade Theory Formulas
ITI Electrician 1st Year Trade Theory Formulas
1st Year Trade Theory Formulas
⚡ ITI Electrician 1st Year – Complete Formula Sheet (With Units)
Comprehensive list of formulas for ITI Electrician 1st Year Trade Theory.
⚡️Electric Charge
\[Q = I \times t\]
Quantity | Symbol | Unit |
---|---|---|
Charge | Q | Coulomb (C) |
Current | I | Ampere (A) |
Time | t | Second (s) |
🧮 Ohm’s Law
\[V = I \times R\]
Quantity | Symbol | Unit |
---|---|---|
Voltage | V | Volt (V) |
Current | I | Ampere (A) |
Resistance | R | Ohm (\(\Omega\)) |
🧮 Resistance – Derived Formulas
\[R = \frac{V}{I}\] \[R = \frac{W}{I^2}\] \[R = \frac{V^2}{W}\]
Formula | Based On | Unit |
---|---|---|
\(R = \frac{V}{I}\) | Ohm’s Law | Ohm (\(\Omega\)) |
\(R = \frac{W}{I^2}\) | Power Formula \(W = I^2 R\) | Ohm (\(\Omega\)) |
\(R = \frac{V^2}{W}\) | Power Formula \(W = \frac{V^2}{R}\) | Ohm (\(\Omega\)) |
🔗 Resistors in Series & Parallel
Resistors in Series:
\[R_{\text{total}} = R_1 + R_2 + \ldots + R_n\]
Resistors in Parallel:
\[\frac{1}{R_{\text{total}}} = \frac{1}{R_1} + \frac{1}{R_2} + \ldots + \frac{1}{R_n}\]
Quantity | Symbol | Unit |
---|---|---|
Resistance | R | Ohm (\(\Omega\)) |
Total Resistance | \(R_{total}\) | Ohm (\(\Omega\)) |
🧲 Inductors in Series & Parallel
Inductors in Series:
\[L_{\text{total}} = L_1 + L_2 + \cdots + L_n\]
Inductors in Parallel:
\[\frac{1}{L_{\text{total}}} = \frac{1}{L_1} + \frac{1}{L_2} + \cdots + \frac{1}{L_n}\]
Quantity | Symbol | Unit |
---|---|---|
Inductance | L | Henry (H) |
Total Inductance | \(L_{total}\) | Henry (H) |
📏 Resistivity & Conductivity
Resistivity Formula:
\[R = \rho \frac{L}{A}\]
Conductivity Formula:
\[\sigma = \frac{1}{\rho}\]
Quantity | Symbol | Unit |
---|---|---|
Resistance | R | Ohm (\(\Omega\)) |
Resistivity | \(\rho\) | Ohm-meter (\(\Omega \cdot m\)) |
Length | L | Meter (m) |
Area (Cross-section) | A | Meter² (m²) |
Conductivity | \(\sigma\) | Siemens/meter (S/m) |
🔁 Kirchhoff’s Laws
KCL (Kirchhoff’s Current Law):
The algebraic sum of currents entering a junction is equal to the algebraic sum of currents leaving the junction.
\[\sum I_{\text{in}} = \sum I_{\text{out}}\]
Unit for Current: Ampere (A)
KVL (Kirchhoff’s Voltage Law):
The algebraic sum of all voltages around any closed loop in a circuit is equal to zero.
\[\sum V = 0\]
Unit for Voltage: Volt (V)
🧲 Electromagnetic Induction (Faraday's Law)
\[e = -N \frac{d\phi}{dt}\]
Quantity | Symbol | Unit |
---|---|---|
Induced EMF | e | Volt (V) |
Number of Turns | N | Unitless |
Magnetic Flux | \(\phi\) | Weber (Wb) |
Time | t | Second (s) |
The negative sign indicates the direction of the induced EMF (Lenz's Law). |
🔌 Capacitors in Series & Parallel
Capacitors in Series:
\[\frac{1}{C_{\text{total}}} = \frac{1}{C_1} + \frac{1}{C_2} + \cdots + \frac{1}{C_n}\]
Capacitors in Parallel:
\[C_{\text{total}} = C_1 + C_2 + \cdots + C_n\]
Quantity | Symbol | Unit |
---|---|---|
Capacitance | C | Farad (F) |
Total Capacitance | \(C_{total}\) | Farad (F) |
🧮 Electrical Energy
\[E = P \times t\]
Quantity | Symbol | Unit |
---|---|---|
Energy | E | Watt-hour (Wh), Kilowatt-hour (kWh), Joule (J) |
Power | P | Watt (W) |
Time | t | Hour (h) or Second (s) |
💡 Electric Work
\[W = V \times I \times t\]
Quantity | Symbol | Unit |
---|---|---|
Work Done | W | Joule (J) |
Voltage | V | Volt (V) |
Current | I | Ampere (A) |
Time | t | Second (s) |
🔥 Joule’s Law of Heating
\[H = I^2 R t\]
Quantity | Symbol | Unit |
---|---|---|
Heat Produced | H | Joule (J) |
Current | I | Ampere (A) |
Resistance | R | Ohm (\(\Omega\)) |
Time | t | Second (s) |
🔋 Electric Power (DC) – 3 Formulas
\[P = V \times I\] \[P = I^2 \times R\] \[P = \frac{V^2}{R}\]
Quantity | Symbol | Unit |
---|---|---|
Power | P | Watt (W) |
Voltage | V | Volt (V) |
Current | I | Ampere (A) |
Resistance | R | Ohm (\(\Omega\)) |
⚡AC Power – Single & Three Phase
\[P = V \times I \times \cos\phi \quad
\] \[\text{(Single Phase)}\] \[P = \sqrt{3} \times V \times I \times \cos\phi \quad \]\[\text{(Three Phase)}\]
\] \[\text{(Single Phase)}\] \[P = \sqrt{3} \times V \times I \times \cos\phi \quad \]\[\text{(Three Phase)}\]
Quantity | Symbol | Unit |
---|---|---|
Active Power | P | Watt (W) |
Line Voltage | V | Volt (V) |
Line Current | I | Ampere (A) |
Power Factor | \(\cos\phi\) | Unitless |
⚡ Types of Power
\[ \text{Single Phase}\] \[S = V \times I \] \[P = V \times I \times \cos\phi \] \[Q = V \times I \times \sin\phi \] \[\] \[ \text{Three Phase}\] \[S = \sqrt{3} \times V \times I \] \[P = \sqrt{3} \times V \times I \times \cos\phi \] \[Q = \sqrt{3} \times V \times I \times \sin\phi \] \[\] \[ \text{Power Triangle}\] \[S^2 = P^2 + Q^2 \]
Quantity | Symbol | Unit |
---|---|---|
Apparent Power | S | Volt-Ampere (VA) |
Active Power | P | Watt (W) |
Reactive Power | Q | Volt-Ampere Reactive (VAR) |
Power Factor Angle | \(\phi\) | Radian / Degree |
🧠 Power Factor – 3 Formulas
\[\cos\phi = \frac{P}{S}\] \[\cos\phi = \frac{R}{Z}\] \[\cos\phi = \frac{1}{\sqrt{1 + \left( \frac{Q}{P} \right)^2 }}\]
Quantity | Symbol | Unit |
---|---|---|
Power Factor | \(\cos\phi\) | Unitless |
Active Power | P | Watt (W) |
Apparent Power | S | VA |
Resistance | R | Ohm (\(\Omega\)) |
Impedance | Z | Ohm (\(\Omega\)) |
Reactive Power | Q | VAR |
🔂 AC Waveform Characteristics
RMS (Root Mean Square) Values:
\[V_{rms} = \frac{V_m}{\sqrt{2}} \approx 0.707 \times V_m\] \[I_{rms} = \frac{I_m}{\sqrt{2}} \approx 0.707 \times I_m\]
Average Value (for half cycle of sine wave):
\[V_{avg} = \frac{2 V_m}{\pi} \approx 0.637 \times V_m\] \[I_{avg} = \frac{2 I_m}{\pi} \approx 0.637 \times I_m\]
Form Factor:
\[\text{Form Factor} = \frac{V_{rms}}{V_{avg}} \approx 1.11\]
Peak Factor (Crest Factor):
\[\text{Peak Factor} = \frac{V_m}{V_{rms}} \approx 1.414\]
Quantity | Symbol | Unit |
---|---|---|
Peak Voltage | \(V_m\) | Volt (V) |
Peak Current | \(I_m\) | Ampere (A) |
RMS Voltage | \(V_{rms}\) | Volt (V) |
RMS Current | \(I_{rms}\) | Ampere (A) |
Average Voltage | \(V_{avg}\) | Volt (V) |
Average Current | \(I_{avg}\) | Ampere (A) |
Form Factor | - | Unitless |
Peak Factor | - | Unitless |
📐 Impedance and Reactance
\[Z = \sqrt{R^2 + X^2}\] \[X = X_L - X_C\]
Quantity | Symbol | Unit |
---|---|---|
Impedance | Z | Ohm (\(\Omega\)) |
Resistance | R | Ohm (\(\Omega\)) |
Total Reactance | X | Ohm (\(\Omega\)) |
Inductive Reactance | \(X_L\) | Ohm (\(\Omega\)) |
Capacitive Reactance | \(X_C\) | Ohm (\(\Omega\)) |
🌀 Inductive & Capacitive Reactance
\[X_L = 2\pi f L\] \[X_C = \frac{1}{2\pi f C}\]
Quantity | Symbol | Unit |
---|---|---|
Inductive Reactance | \(X_L\) | Ohm (\(\Omega\)) |
Capacitive Reactance | \(X_C\) | Ohm (\(\Omega\)) |
Frequency | f | Hertz (Hz) |
Inductance | L | Henry (H) |
Capacitance | C | Farad (F) |
⚙️ Admittance
\[Y = \frac{1}{Z}\]
Quantity | Symbol | Unit |
---|---|---|
Admittance | Y | Siemens (S) or mho (\(\mho\)) |
Impedance | Z | Ohm (\(\Omega\)) |
🔋 Capacitance
\[C = \frac{\varepsilon_0 \varepsilon_r A}{d}\]
Quantity | Symbol | Unit |
---|---|---|
Capacitance | C | Farad (F) |
Permittivity of Free Space | \(\varepsilon_0\) | Farad/meter (F/m) \(\approx 8.854 \times 10^{-12}\) F/m |
Relative Permittivity (Dielectric Constant) | \(\varepsilon_r\) | Unitless |
Area of Plates | A | Meter² (m²) |
Distance between Plates | d | Meter (m) |
🔄 Transformer Formulas
Voltage and Turns Ratio:
\[\frac{V_1}{V_2} = \frac{N_1}{N_2}\]
Current and Turns Ratio (for Ideal Transformer):
\[\frac{I_2}{I_1} = \frac{N_1}{N_2}\]
Quantity | Symbol | Unit |
---|---|---|
Primary Voltage | \(V_1\) | Volt (V) |
Secondary Voltage | \(V_2\) | Volt (V) |
Primary Turns | \(N_1\) | Unitless |
Secondary Turns | \(N_2\) | Unitless |
Primary Current | \(I_1\) | Ampere (A) |
Secondary Current | \(I_2\) | Ampere (A) |
📐 Constants & Conversions
Quantity | Value | Unit |
---|---|---|
1 Kilowatt-hour (kWh) | 1000 Wh = 3,600,000 J | Energy |
1 Horsepower (HP) | 746 W (Electrical HP) | Power |
Speed of Light (in vacuum) | \(3 \times 10^8\) | m/s |
Permittivity of free space | \(8.854 \times 10^{-12}\) | F/m |
Permeability of free space | \(4\pi \times 10^{-7}\) | H/m |
⚙️ Efficiency of Electrical Machines
\[\eta = \frac{\text{Output Power}}{\text{Input Power}} \times 100\%\]
Quantity | Symbol | Unit |
---|---|---|
Efficiency | \(\eta\) | Percent (%) |
Output Power | - | Watt (W) |
Input Power | - | Watt (W) |
Applies to motors, transformers, generators, etc.
Battery Efficiency
\[\eta = \frac{\text{Output Energy}}{\text{Input Energy}} \times 100\%\]
Quantity | Symbol | Unit |
---|---|---|
Efficiency | \(\eta\) | Percent (%) |
Output Energy | - | Watt-hour (Wh) |
Input Energy | - | Watt-hour (Wh) |
⏱ Frequency & Time Period
\[f = \frac{1}{T}\]
Quantity | Symbol | Unit |
---|---|---|
Frequency | f | Hertz (Hz) |
Time Period | T | Second (s) |
This post is licensed under CC BY 4.0 by the author.