Post

Trigonometry

Workshop Calculation and Science, Module-10

Trigonometry

⭕️ Show all Answers

Q1: How many degrees is equal to one radian?

  • 360/π°
  • π/360°
  • π/180°
  • 180°/π

Q2: Which is equal to sinθ?

  • Opposite side / Hypotenuse
  • Hypotenuse / Opposite side
  • Adjacent side / Hypotenuse
  • Hypotenuse / Adjacent side

Q3: What is equal to cosθ?

  • Hypotenuse / Adjacent side
  • Adjacent side / Hypotenuse
  • Opposite side / Hypotenuse
  • Hypotenuse / Opposite side

Q4: What is equal to tanθ?

  • Opposite side / Hypotenuse
  • Adjacent side / Hypotenuse
  • Opposite side / Adjacent side
  • Adjacent side / Opposite side

Q5: What is the value of tanθ if sinθ = 4/5?

  • 3/4
  • 4/5
  • 3/5
  • 4/3
Show Explanation

Given: \[\sin \theta = \frac{4}{5}\]
Use identity: \(\sin \theta = \frac{\text{Opposite}}{\text{Hypotenuse}}\) ⇒ Opposite = 4, Hypotenuse = 5
Find Adjacent side using Pythagoras:
\[ \text{Adjacent} = \sqrt{5^2 - 4^2} = \sqrt{25 - 16} = \sqrt{9} = 3 \] \[ \tan \theta = \frac{\text{Opposite}}{\text{Adjacent}} = \frac{4}{3} \]


Q6: What is the value of θ if sinθ = √3/2?

  • 30°
  • 45°
  • 60°
  • 90°
Show Explanation

From trigonometric table:
\[ \sin 60^\circ = \frac{\sqrt{3}}{2} \] Hence, \(\theta = 60^\circ\)


Q7: What is the value of tan 45° if sin 45° = 1/√2?

  • 1
  • 1/2
  • √3
  • √2
Show Explanation

Given: \(\sin 45^\circ = \frac{1}{\sqrt{2}}\)
We know from standard trigonometric values: \[ \tan 45^\circ = \frac{\sin 45^\circ}{\cos 45^\circ} = \frac{\frac{1}{\sqrt{2}}}{\frac{1}{\sqrt{2}}} = 1 \]


Q8: What is the value of sin 30° if cos 30° = √3/2?

  • 2/3
  • 1/2
  • √3/2
  • 1/√2
Show Explanation

Given: \(\cos 30^\circ = \frac{\sqrt{3}}{2}\)
From standard trigonometric identities: \[ \sin 30^\circ = \frac{1}{2} \]


Q9: What is 1 + cot²θ?

  • sec²θ
  • cosec²θ
  • cot²θ
  • tan²θ

Q10: What is the height of the wall where the ladder touches the wall if the ladder is 2.5 m long makes an angle of 60° with the ground?

Triangle diagram
  • 4.13 m
  • 4.23 m
  • 4.33 m
  • 4.43 m
Show Explanation

Use: \(\sin \theta = \frac{\text{Opposite}}{\text{Hypotenuse}}\)
\[ \sin 60^\circ = \frac{h}{2.5} \Rightarrow \frac{\sqrt{3}}{2} = \frac{h}{2.5}\]\[ \Rightarrow h = \frac{\sqrt{3}}{2} \times 2.5 \approx 4.33\ \text{m} \]


Q11: What is the height of AC?

Diagram of a triangle
  • 1.732 m
  • 17.32 m
  • 173.2 m
  • 1732 m
Show Explanation

If AC = \(100 \times \sqrt{3} \Rightarrow 100 \times 1.732 = 173.2\ \text{m}\)
This is a typical trigonometry setup where tan or sin is used with √3.


Q12: What is the height of the building if a ladder at 45° touches the building placed 16 m from the base of the building?

  • 15 m
  • 16 m
  • 17 m
  • 18 m
Show Explanation

\[ \tan 45^\circ = \frac{\text{height}}{16} = 1 \Rightarrow \text{height} = 16\ \text{m} \]


Q13: What is the angle of elevation of the top of a light house of 15 m height seen at a point 15 m away from the base?

Diagram of a triangle
  • 30°
  • 45°
  • 60°
  • 90°
Show Explanation

If height = base = 15 m, then:
\[ \tan \theta = \frac{15}{15} = 1 \Rightarrow \theta = 45^\circ \]


Q14: What is the angle of θ?

Diagram of a triangle
  • 30°
  • 45°
  • 60°
  • 90°
Show Explanation

Given:
Opposite = \(100\sqrt{3}\) m, Adjacent = \(100\) m

Use: \[ \tan \theta = \frac{\text{Opposite}}{\text{Adjacent}} = \frac{100\sqrt{3}}{100} = \sqrt{3} \] From standard trigonometric ratios: \[ \tan 60^\circ = \sqrt{3} \Rightarrow \theta = 60^\circ \]


Q15: What is the term for the object seen higher than eye level?

  • Angle of inclination
  • Angle of friction
  • Angle of elevation
  • Angle of depression


Found a mistake or mismatch in the question or answer? Let us know via email.
" alt="">
This post is licensed under CC BY 4.0 by the author.