Algebra
Workshop Calculation and Science, Module-3
Algebra
⭕️ Show all Answers
Q1: What is the value of \(14x+3y+25x+2y\)?
- \(17x+27y\)
- \(16x+28y\)
- \(39x+5y\)
- \(44xy\)
Show Calculation
\[ 14x+3y+25x+2y \]\[ = (14x+25x) + (3y+2y) \] \[ = 39x + 5y \]Q2: What is the multiplication value of \(5a^2b \times 8a^5b^3\)?
- \(40a^{7}b^{4}\)
- \(40a^{7}b^{2}\)
- \(40a^{2}b^{4}\)
- \(40a^{10}b^{3}\)
Show Calculation
\[ 5a^2b \times 8a^5b^3 = (5\times8)\,a^{2+5}\,b^{1+3} = 40a^7b^4 \]Q3: What is the simplified value of \(\dfrac{3x + 15}{5x + 25}\)?
- \(\tfrac{5}{3}\)
- \(\tfrac{3}{5}\)
- -\(\tfrac{5}{3}\)
- -\(\tfrac{3}{5}\)
Show Calculation
\[ \frac{3x+15}{5x+25} = \frac{3(x+5)}{5(x+5)} = \frac{3}{5} \]Q4: What is the value of x if \(13+x=20\)?
- 8
- 7
- 9
- 13
Show Calculation
\[ 13 + x = 20 \Rightarrow x = 20 - 13 = 7 \]Q5: What is the value of x, if \(x(120) = 960\)?
- 6
- 7
- 8
- 10
Show Calculation
\[ 120x = 960 \Rightarrow x = \frac{960}{120} = 8 \]Q6: What is the formula for \(a^m \times a^n\)?
- \(a^{m+n}\)
- \(a^{m-n}\)
- \(a^{mn}\)
- \(n a^m\)
Q7: Which is the formula for \(\dfrac{a^m}{a^n}\)?
- \(a^{m+n}\)
- \(a^{m-n}\)
- \(a^{mn}\)
- \((a)^{m/n}\)
Q8: What is the value of any number raised to the power of 0?
- 0
- 1
- α
- 10
Q9: What is the value of \(\dfrac{1}{a^m}\)?
- \(a^m\)
- \(a^{-m}\)
- \(\sqrt[m]{a}\)
- \(\sqrt[m]{a}\)
Q10: Which is equal to \((a^m)^n\)?
- \(a^{m+n}\)
- \(a^m\)
- \(a^{m-n}\)
- \(a^{mn}\)
Q11: What is the expanded form of \((a+b)^2\)?
- \(a^2 + 2ab + b^2\)
- \(a^2 - 2ab + b^2\)
- \(a^2 + 2ab - b^2\)
- -\(a^2 + 2ab - b^2\)
Q12: What is the formula for \((a-b)^2\)?
- \(a^2 - 2ab + b^2\)
- \(a^2 + 2ab + b^2\)
- \(a^2 - 2ab - b^2\)
- -\(a^2 - 2ab - b^2\)
Q13: Which is equal to \((a+b)^2 - (a-b)^2\)?
- \(2ab\)
- \(3ab\)
- \(4ab\)
- \(5ab\)
Show Calculation
\[ (a+b)^2 - (a-b)^2\]\[ = \big(a^2+2ab+b^2\big) - \big(a^2-2ab+b^2\big) = 4ab \]Q14: What is the value of \(a^5 \times a^{-3} \times a^{-2}\)?
- \(a^{10}\)
- \(a^{-10}\)
- \(a^{6}\)
- \(a^{0}\)
Show Calculation
\[ a^5 \times a^{-3} \times a^{-2} = a^{5-3-2} = a^0 = 1 \]Q15: What is the value of \((a^3)^5\)?
- \(a^{15}\)
- \(a^{8}\)
- \(a^{2}\)
- \(a^{-2}\)
Show Calculation
\[ (a^3)^5 = a^{3\times5} = a^{15} \]Q16: What is the value of \(625^{1/2}\)?
- 0
- 25
- 525
- 62.5
Show Calculation
\[ 625^{1/2} = \sqrt{625} = 25 \]Q17: What is the value of \(\dfrac{1}{a^{-5}}\)?
- \(a^{5}\)
- \(1/a^{5}\)
- \(5a\)
- -\(5a\)
Q18: What is the value of \(\dfrac{5x^4}{5x^3}\)?
- \(5x\)
- \(5x^{7}\)
- \(x\)
- \(5x^{4/3}\)
Show Calculation
\[ \frac{5x^4}{5x^3} = \frac{5}{5}\,x^{4-3} = x \]Q19: What is the subtracted value of \(3x - 4x^2 + 2y^2\) from \(4y^2 - 2x + 8x^2\)?
- \(2y^2 - 5x + 12x^2\)
- \(2y^2 + 5x - 12x^2\)
- \(2y^2 - 5x - 12x^2\)
- -\(2y^2 - 5x + 12x^2\)
Show Calculation
\[ (4y^2 - 2x + 8x^2) - (3x - 4x^2 + 2y^2) \] \[ = 4y^2 - 2x + 8x^2 - 3x + 4x^2 - 2y^2 \] \[ = (4y^2-2y^2) + (-2x-3x) + (8x^2+4x^2)\]\[ = 2y^2 - 5x + 12x^2 \]Q20: What is the value of adding \((5x+2y)\), \((4x-7z)\) and \((15z - 3y)\)?
- \(9x - y + 8z\)
- \(x - 9y + 8z\)
- \(x + 9y + 8z\)
- \(9x + y - 8z\)
Show Calculation
\[ (5x+2y) + (4x-7z) + (15z-3y)\]\[ = (5x+4x) + (2y-3y) + (-7z+15z) \] \[ = 9x - y + 8z \]Q21: What is the value of \(\dfrac{12x^3y^2}{4x^2y}\)?
- \(8xy\)
- \(16xy\)
- \(3xy\)
- -3xy
Show Calculation
\[ \frac{12x^3y^2}{4x^2y} = \frac{12}{4} \, x^{3-2} \, y^{2-1} = 3xy \]Q22: What is the value of x, if \(3(2x-4) = -4x + 28\)?
- 4
- 8
- 6
- 12
Show Calculation
\[ 3(2x-4) = -4x + 28 \]\[\Rightarrow 6x - 12 = -4x + 28 \] \[ 6x + 4x = 28 + 12 \Rightarrow 10x = 40 \Rightarrow x = 4 \]Q23: What is the value of x if \(\dfrac{x+2}{2} = 19\)?
- 38
- 33
- 35
- 36
Show Calculation
\[ \frac{x+2}{2}=19 \Rightarrow x+2 = 38 \Rightarrow x = 36 \]Q24: What is the value of x if \(11x + 4 = 37\)?
- 2
- 3
- 4
- 5
Show Calculation
\[ 11x + 4 = 37 \Rightarrow 11x = 33 \Rightarrow x = 3 \]Q25: What is the value of \(\dfrac{1}{a^{-m}}\)?
- \(a^{-m}\)
- \(a^{m}\)
- \(\sqrt[m]{a}\)
- \(a^{1/m}\)
Q26: What is the value of \(\dfrac{a^m}{a^n}\)?
- \(a^{m+n}\)
- \(\sqrt{a^{m+n}}\)
- \(\sqrt{a^{m-n}}\)
- \(a^{m-n}\)
Q27: Which is the expansion of \(a^3 + b^3\)?
- \((a-b)(a^2 + b^2 - ab)\)
- \((a+b)(a^2 - ab + b^2)\)
- \(a^3 + b^3 + 3ab(a+b)\)
- \(a^3 - b^3 + 3ab(a-b)\)
Q28: What is the expansion of \((a+b+c)^2\)?
- \(a^2+b^2+c^2+2(ab+bc+ca)\)
- \(a^2+b^2+c^2-2ab+2bc+2ca\)
- \(a^2+b^2+c^2+2ab-2bc+2ca\)
- \(a^2-b^2-c^2+2ab+2bc+2ca\)
Q29: Which is expanded form of \(a^3 - b^3\)?
- \((a+b)(a^2 - b^2 - ab)\)
- \((a-b)(a^2 + ab + b^2)\)
- \((a-b)(a^2 - b^2 - ab)\)
- \((a-b)(a^2 - b^2 + ab)\)
Q30: What is the value of \(\dfrac{6^3}{(-3)^3}\)?
- 8
- -8
- 27
- -27
Show Calculation
\[ \frac{6^3}{(-3)^3} \] \[ = \frac{6 \times 6 \times 6}{(-3) \times (-3) \times (-3)} \] \[ = \frac{216}{-27} \] \[ = -8 \]Q31: What is the value of \(x^2 - y^2\) if \((x+y) = 9\), \((x - y) = 4\)?
- 13
- 65
- 36
- 46
Show Calculation
\[ x^2 - y^2 = (x+y)(x-y) = 9 \times 4 = 36 \]Q32: What is the value of \(x\) if \(x - y = 6\) and \(x + y = 8\)?
- 5
- 6
- 7
- 14
Show Calculation
\[ (x-y)+(x+y) = 6 + 8 \]\[\Rightarrow 2x = 14 \Rightarrow x = 7 \]Q33: What is the value of \(a^2+b^2\) if \(a+b=9\) and \(ab = 20\)?
- 121
- -121
- 41
- -41
Show Calculation
\[ a^2 + b^2 = (a+b)^2 - 2ab \]\[= 9^2 - 2\cdot20 = 81 - 40 = 41 \]Q34: What is the value of \(ab\) if \((a+b)^2=36\) and \((a-b)^2=24\)?
- 6
- 4
- 3
- 2
Show Calculation
\[ (a+b)^2 - (a-b)^2 = 4ab \]\[\Rightarrow 36 - 24 = 12 = 4ab \] \[ \Rightarrow ab = \frac{12}{4} = 3 \]Q35: What is the value of \(x^3+3y^2x^2\) if \(x=3, y=2\)?
- 135
- 81
- 54
- 63
Show Calculation
\[ x^3 + 3y^3x = x^3 + 3(x^2)(y^2) \] Substitute \(x=3,\ y=2\): \[ x^3 = 3^3 = 27, y^2 = 2^2 = 4, x^2 = 9 \] \[ 3 \cdot x^2 \cdot y^2 = 3 \cdot 9 \cdot 4 = 108 \] \[ \Rightarrow x^3 + 3y^2x^2 = 27 + 108 = 135 \]Q36: What are the three consecutive numbers if their sum is 42?
- 11, 12, 13
- 12, 13, 14
- 13, 14, 15
- 14, 15, 16
Show Calculation
Let the numbers be \(n, n+1, n+2\). Then \[ n + (n+1) + (n+2) = 3n + 3 = 42 \]\[\Rightarrow 3n = 39 \Rightarrow n = 13 \] So the numbers are \(13, 14, 15\). Found a mistake or mismatch in the question or answer? Let us know via email.
This post is licensed under CC BY 4.0 by the author.